Embedding $\ell _1$ as Lipschitz functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of first- and second-order methods for \(\ell _1\) -regularized least squares problems

We study the performance of firstand second-order optimization methods for `1-regularized sparse least-squares problems as the conditioning of the problem changes and the dimensions of the problem increase up to one trillion. A rigorously defined generator is presented which allows control of the dimensions, the conditioning and the sparsity of the problem. The generator has very low memory req...

متن کامل

Maximum Consensus Parameter Estimation by Reweighted \ell _1 ℓ 1 Methods

Robust parameter estimation in computer vision is frequently accomplished by solving the maximum consensus (MaxCon) problem. Widely used randomized methods for MaxCon, however, can only produce random approximate solutions, while global methods are too slow to exercise on realistic problem sizes. Here we analyse MaxCon as iterative reweighted algorithms on the data residuals. We propose a smoot...

متن کامل

Embedding with a Lipschitz function

We investigate a new notion of embedding of subsets of {−1, 1}n in a given normed space, in a way which preserves the structure of the given set as a class of functions on {1, ..., n}. This notion is an extension of the margin parameter often used in Nonparametric Statistics. Our main result is that even when considering “small” subsets of {−1, 1}n, the vast majority of such sets do not embed i...

متن کامل

Bi-lipschitz Embedding of Projective Metrics

We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.

متن کامل

Controlling Lipschitz functions

Given any positive integers m and d, we say the a sequence of points (xi)i∈I in Rm is Lipschitz-d-controlling if one can select suitable values yi (i ∈ I) such that for every Lipschitz function f : Rm → Rd there exists i with |f(xi)−yi| < 1. We conjecture that for every m ≤ d, a sequence (xi)i∈I ⊂ Rm is d-controlling if and only if sup n∈N |{i ∈ I : |xi| ≤ n}| nd =∞. We prove that this conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2005

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-05-07943-8